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Abstract

Three traditional ASR parameterizations matched with Hidden Markov Models (HMMs) are compared to humans

for speaker-dependent consonant recognition using nonsense syllables degraded by highpass filtering, lowpass filtering,

or additive noise. Confusion matrices were determined by recognizing the syllables using different ASR front ends,

including Mel-Filter Bank (MFB) energies, Mel-Filtered Cepstral Coefficients (MFCCs), and the Ensemble Interval

Histogram (EIH). In general the MFB recognition accuracy was slightly higher than the MFCC, which was higher than

the EIH. For syllables degraded by lowpass and highpass filtering, automated systems trained on the degraded condi-

tion recognized the consonants as well as humans. For syllables degraded by additive speech-shaped noise, none of the

automated systems recognized consonants as well as humans. The greatest advantage displayed by humans was in

determining the correct voiced/unvoiced classification of consonants in noise.
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1. Introduction

Despite significant advances in Automated

Speech Recognition (ASR) systems, performance

at human levels has not yet been attained. Human

recognition results provide proof that continuous

speech can be recognized more accurately than

the best current ASR systems. In theory, if a com-

plete model of human speech processing were

available, human-level performance would be
ed.
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immediately realizable. While no such model is

currently available, knowledge of how humans

go about the speech recognition task is potentially

useful in directing research on improving ASR

systems.
Lippmann (1997) compared results of human

and machine speech recognition and found that

machine word error rates were typically about an

order of magnitude greater in quiet environments.

The gap in performance between humans and ma-

chines tends to get larger for speech in noise or

when the recognition task gets more complex, for

example, as the task moves from recognition of
isolated words to continuous speech. Two sources

of the superior recognition performance are better

abilities for recognizing the features in the speech

signal that carry information differentiating be-

tween phones and the use of higher-level speech

mechanisms (e.g. vocabulary, syntax) for deliver-

ing information.

This paper continues a line of research compar-
ing human and machine speech recognition perfor-

mance at the consonant recognition level in tests

that minimize or remove higher-level (e.g. lexical,

syntactic) language mechanisms for information

flow between a speaker and a listener. By removing

these effects, the comparison explores how well hu-

mans and machines can determine the speech sig-

nal features that distinguish between a set of
consonants. Comparisons are made in a range of

degraded conditions enabling examination of rec-

ognition as the audio cues are increasingly masked

or removed. Examination of common confusions

explores which differentiating features are most ro-

bustly identified by the humans and the automated

systems. By testing a number of front ends we can

examine if there are differences in their ability to
provide differentiating features to a common back

end and whether incorporating knowledge of hu-

man audio processing leads to more human-like

error patterns.

Much work in this area has focused on using

models of auditory nerve encoding of speech as

the front end or parameterization stage of ASR.

One such auditory-based front end is the Ensemble
Interval Histogram (EIH) as described in Ghitza

(1994). Ghitza (1993) compared performance of

cepstral coefficients calculated using the Fourier
Power Spectrum with cepstral coefficients calcu-

lated using the auditory-based Ensemble Interval

Histogram (EIH) front end and with human per-

formance. The speech task was the Diagnostic

Rhyme Test (DRT). The DRT is structured to
measure relative performance on recognition of

phonetic features, which differentiate between con-

sonant sounds. Recognition was tested for speech

in additive flat-spectrum noise at Speech to Noise

Ratios (SNRs) of +30, +20, and +10 dB.

While the cepstral coefficients based on the EIH

outperformed those based on the Fourier Power

Spectrum in noisy conditions, neither automated
system approached human-level performance.

The disparity in overall recognition levels and the

lack of errors by human listeners for half of the

error categories examined makes response pattern

comparisons problematic.

Jankowski et al. (1995) compared performance

of a traditional mel-cepstra system with Seneff�s
synchrony/mean-rate model and with Ghitza�s
EIH in additive speech babble over a range of

Speech to Noise Ratios (SNRs). The speech task

was isolated word recognition for a set of 105 air-

craft commands. Results from the systems are gen-

erally similar except at the poorest SNR (+6 dB),

where the error rate for the auditory-based systems

was roughly 22% compared to 27% for the tradi-

tional mel-cepstra system.
Human performance levels for recognition of

noise-free, read speech (the CSR�94 Spoke 10 cor-

pus, made up of multiple speakers reading pas-

sages from the 5000 word vocabulary Wall Street

Journal corpus) do not vary as noise is added

down to +10 dB SNR (Ebel and Picone, 1995).

Jankowski et al. found that error rates of the auto-

mated systems they tested increase from roughly
1.0% in quiet to 7.5% at +12 dB SNR with training

on clean speech alone. When training included

speech degraded by noise, error rates increased

from less than 1% in quiet to roughly 3.5% at

+12 dB SNR. This is an example of the sensitivity

of machine performance to mismatches between

training and test conditions.

This paper compares the performance of the
auditory-based EIH front end and two traditional

front ends, Mel-Filter Bank (MFB) energies and

Mel-Frequency Cepstral Coefficients (MFCCs)
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with data on human performance on the same

task: recognition of consonants in nonsense sylla-

bles. This extends comparisons between humans

and machines at the subword recognition level

over degradations sufficient to cause a significant
number of errors for the human listeners and

thereby allows for comparisons of error patterns

between humans and machines.

The paper is organized as follows. The data-

bases and outcome measures used, and the human

consonant perception tests, are described in Sec-

tion 2. The implementation of the ASR systems

is described in Section 3. Comparisons, described
in Section 4, consider both recognition scores

and error patterns to determine which front ends,

if any, produce error patterns similar to those of

humans. Finally, Section 5 contains a summary

and discussion of the results.
2. Methods

2.1. Speech materials

Two sets of human consonant recognition re-

sults were used with one set of machine consonant

recognition results for comparing human and

machine recognition. One set of human results is

for a database composed of consonant–vowel–
consonant (CVC) syllables and used to test human

recognition in highpass and additive noise condi-

tions. This same CVC database is also used for

all machine recognition testing (highpass, lowpass,

and additive noise). The other set of human results

is reported by Miller and Nicely (1955) for conso-

nant–vowel (CV) syllables, on which humans were

tested in highpass, lowpass, and additive noise
conditions. Because human results for recogni-

tion of lowpass filtered speech are not available

for the CVC database, lowpass comparisons are

limited to machine recognition on the CVC data-

base with human results on Miller and Nicely�s
CV database.

2.1.1. CVC database

The CVC database is composed of 496 Conso-

nant–Vowel–Consonant syllables, each preceded

by a schwa. The materials were recorded by one
male and one female talker, each of whom

produced half of the CVC tokens, in the form

/c/-CVC, where /c/ is the unstressed schwa. The syl-

lables were constructed using 12 consonants and 6

vowels. The consonants were /p, t, k, b, d, g, h, v, ð,
s, S, z/ and the vowels were /i, 2, u, I, e, U/. The mean

durations of the tokens spoken by each of the two

talkers were 634 (M) and 574 (F) ms.

The initial and final consonants for a CVC

token were independently drawn with probability

1/12 from the set of 12 consonants, allowing for

duplications of CVCs (one male and one female

token) and omissions. The first 12 rows of Table 1
lists the consonants that are present in the data-

base, along with their classification with respect

to four different distinctive features. The CVC data-

base had been used in psychophysical tests of hu-

man phone recognition for speech processed by

amplitude compression (Lippmann, et al., 1981;

Bustamante and Braida, 1986; DeGennaro et al.,

1986; Bustamante and Braida, 1987) and more re-
cently for speech degraded by filtering (Ronan

et al., 2004), and by additive speech-shaped noise

(Dix and Braida, 2002). During human testing, lis-

teners knew the constraints of the database (e.g.

that whatever token was chosen from the CVC

database, it would begin with a schwa and be fol-

lowed by a Consonant–Vowel–Consonant se-

quence, where each of the consonants would be
one of 12 possible, and each of the vowels would

be one of six possible).

The speech was lowpass filtered to a bandwidth

of 4500 Hz, sampled at 10 kHz, converted to 12 bit

samples, and normalized to have the same rms

value. In the tests on humans, filtering was per-

formed by linear-phase FIR filters designed using

Matlab (Mathworks, 2004). Filter lengths varied
from 896 to 1216 points. Transition regions widths

were 50 Hz, with out-of-band attenuations of at

least 80 dB. Filter bands were 700–4500, 1400–

4500, 2100–4500, and 2800–4500 Hz. Unfiltered

speech was presented at 75 dB SPL. After filtering,

speech-shaped noise (at +35 dB SNR) was added

to the filtered signal to obscure the speech in the

stop band.
In separate tests, speech-shaped noise was

added to the unfiltered (0–4500 Hz, presented at

75 dB SPL) speech at SNRs of �7, �4, +2, +8,



Table 1

Feature descriptions of the 12 consonants used in the CVC database (first 12 lines) and of the additional four used by Miller and Nicely

(1955, final four lines)

Consonant Voicing Frication Sibilance Place Example

p 0 0 0 0 peep

t 0 0 0 1 toot

k 0 0 0 2 kick

b 1 0 0 0 bob

d 1 0 0 1 deed

g 1 0 0 2 gig

h 0 1 0 1 thin

v 1 1 0 0 vet

ð 1 1 0 1 them

s 0 1 1 1 sis

S 0 1 1 2 shin

z 1 1 1 1 zip

f 0 1 1 0 fat

Ω 1 1 1 2 azure

m 1 0 0 0 mom

n 1 0 0 1 now

For voicing, frication, and sibilance, a 0 indicates the feature is absent and a 1 indicates the feature is present. The place classes follow

those of Miller and Nicely: 0 = labial, 1 = alveolar, and 2 = velar. Note that the Sibilance feature here corresponds to Miller and

Nicely�s �Duration� feature.
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and +14 dB. Tests by five listeners who did not

participate in the experiments reported in this

paper indicated that initial consonants were recog-

nized correctly 90.9% of the time and final conso-

nants 89.4% of the time for speech that was not

degraded by noise.

For the ASR tests using highpass filtering,

somewhat different filters were used. All filters
used 512 coefficients to create sharp cutoffs equiv-

alent to roughly a sixth-order highpass or lowpass

filter at the cutoff frequencies. Highpass filtering

was applied using cutoffs of 200, 400, 800, 1600,

and 2800 Hz. Lowpass filtering was applied using

cutoffs of 500, 1000, 2000, 2400, 2700, 3000, and

4000 Hz. After filtering, speech-shaped noise (at

+30 dB SNR) was added to the filtered signal to
obscure the speech in the stop band.

For ASR tests of speech degraded by additive

speech-shaped noise, a Grason–Stadler noise gen-

erator (model 901B) was used to generate noise

with a spectrum that was flat to 1 kHz and then fell

at roughly 6 dB/octave. This was the same genera-

tor and same spectrum as was used in the psycho-

physical tests of CVCs. Noise was added to the
CVC tokens to create databases at SNRs of 0,
+5, +10, +20, and +30 dB. To generate a signal

at a desired SNR, the root-mean-squared (rms)

values of the normalized CVC tokens (0–4500 Hz

bandwidth) were calculated over entire CVC data-

base and then noise was added at an appropriate

rms level relative (0–4500 Hz bandwidth) to the

overall average rms value. This is consistent with

the method used for the human CVC studies.

2.1.2. CV database

The CV database (Miller and Nicely, 1955) was

composed of 16 consonants, including /f/, /Ω/, /m/,

and /n/ in addition to all 12 present in the CVC

database (see Table 1), but only the vowel /a/ as

in ‘‘father’’ in contrast to the six vowels present

in the CVC database. Tests explored recognition
in highpass filtering conditions (actually bandpass

conditions of 1000–, 2000–, 2500–, 3000–, 4500–

5000 Hz) and in lowpass filtering conditions (actu-

ally bandpass conditions of 200–300, –400, –600,

–1200, –2500, –5000, and –6500 Hz). The highpass

and lowpass filter skirts were 24 dB per octave,

and the filtered speech was further degraded by

adding flat-spectrum noise at +12 dB SNR. By
contrast, the CVC tests used much less noisy
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speech for the filtering tests. Miller and Nicely also

performed tests of wideband (200–6500 Hz) speech

in additive flat-spectrum noise (at SNR of �18,

�12, �6, 0, +6, and +12 dB).2

Miller and Nicely (1955) tested five female sub-
jects. One subject would speak randomly-ordered

syllables and the other four would record their re-

sponses. The speaker would alternate with being a

listener in the experiments. All of the Miller and

Nicely subjects were United States citizens with

the exception of one Canadian, and none had a

noticeable dialect. Miller and Nicely thus did not

use recorded syllables. Instead, speakers were
trained to produce CV syllables at a ‘‘constant’’

amplitude (standard deviation of 1.04 dB). The

average peak amplitude over a number of exam-

ples was then used as the basis for calculating nec-

essary noise levels for the range of SNRs tested.

We report comparisons between the Miller and

Nicely CV results with the human and machine

CVC results for highpass and additive noise condi-
tions. We shall show that the results from the Mill-

er and Nicely CV study are similar in many ways

to our human CVC results. Because no studies of

human recognition of the CVC database in low-

pass conditions exist, lowpass comparisons will

be limited to machine results on the CVCs with

Miller and Nicely�s CV results.

2.2. Outcome measures

Performance of the human and machine sys-

tems was evaluated in terms of percentage of cor-

rect responses and also in terms of information

transfer.

A confusion matrix was created from the re-

sponses made by all four listeners to both initial
and final consonants, ignoring the response to

the vowel. The Identificaton Score (percentage of

correct responses) was computed from the entries

in this confusion matrix, {Nij}.
2 The difference between the CVC bandwidth, 0–4500 Hz, and

the CV bandwidth, 200–6400 Hz, corresponded to about a 12%

reduction in the Articulation Index (ANSI, 1997) for noiseless

speech. The difference is somewhat less than this because Miller

and Nicely tested at +12 dB SNR.
P ¼ 100

PM
i¼1NiiPM

i¼1

PM
j¼1Nij

ð1Þ

where M is the number of consonant items.

An information transfer measure was also com-
puted for certain subdivisions of the confusion ma-

trix. The Relative Information Transfer score is

computed by mapping the confusion matrix into

an F · F feature matrix, {Kij} and then computing

H and I, defined as

H ¼
XF
i¼1

Ki�

K��
log

K��

Ki�
ð2Þ

I ¼ 100
1

H

XF
i¼1

Ki�

K��

XF
j¼1

Kij

Ki�
log

Kij

Ki�

� �
K��

K�j

� �
ð3Þ

where F is the number of feature categories, H is

the entropy in the stimulus set, I is the Relative

Information Transfer and3

Ki� ¼
XF
j¼1

Kij ð4Þ

K�j ¼
XF
i¼1

Kij ð5Þ

K�� ¼
XF
i¼1

XF
j¼1

Kij ð6Þ

The quantities H and I are both positive, with

H 6 logN ð7Þ
and

0 6 I 6 100 ð8Þ
In general, information transfer provides a mea-

sure of the consistency of responses conditioned on

the presentation of a stimulus rather than their cor-

rectness. More specifically, it measures the extent
to which a stimulus can be uniquely identified given

knowledge of the response. Information transfer is

not simply a monotonic transform of the percent-

age of correct responses: the two differ in the way

in which different types of responses are weighted.
3 The terms in these expressions, e.g.
Kij

Ki�
and K��

K�j
, correspond to

the terms in the confusion matrices presented in Tables 3–11.
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While one could compute information transfer

scores for the entire confusion matrix (such a com-

putation provides a useful alternative to the over-

all percent correct score), it is far more interesting

to divide a matrix into parts by phonetic features
and compute the information transfer score for

the different parts. For example, a 2 · 2 confusion

matrix can be constructed for Voicing by segregat-

ing stimuli and responses according to whether

they are Voiced or not. In this case, errors only

correspond to the confusion of an Unvoiced con-

sonant for a Voiced one and vice versa. A Relative

Information Transfer measure is used (Miller and
Nicely, 1955; Bratakos et al., 2001) to permit dif-

ferent numbers of categories to be compared, un-

like mutual information.

The features used for analyzing the consonant

set were the same as those used by Miller and Ni-

cely except we omit Nasality since none of the

CVC consonants were Nasals. The four features

used were Voicing, Frication, Sibilance (corre-
sponding to Miller and Nicely�s ‘‘Duration’’),

and Place. Using these features allows each of

the CVC consonants to have a distinct combina-

tion of feature values. The consonants are evenly

divided between Voiced and Unvoiced (six and

six as shown in Table 12). Half of the consonants

are Fricatives,4 with a subset of three Sibilant Fric-

atives. When the consonant set is divided by the
three Place values, there are three labials, six alve-

olars, and three velars.

It should be noted that, as pointed out by Miller

and Nicely, the features are generally not indepen-

dent. For example, in the set of 12 consonants that

we tested, all Sibilant consonants were Fricatives.

An exception to this statement applies to the Voic-

ing and Frication features in the case of the CVC
syllables. For all other pairs of features, knowl-

edge of the value of one feature provides informa-

tion about the value of another feature for the

CVC dataset.
4 In the CVC database, but not in the CV database, all the

Non-Fricative sounds are Plosives and all the Fricatives, Non-

Plosives, so all reports of Frication scores for the CVC database

could be equally applied to the feature ‘‘Plosive’’.
2.3. Human consonant perception tests

Two groups of listeners were tested on the CVC

database, one on filtered speech and one on speech

degraded by noise. Both groups were tested with-
out correct answer feedback, after a period of

training on non-test items in which feedback was

presented. The first group consisted of 2 M and

3 F, 18–22 years old, the second consisted of 1

M and 2 F, 19–22 years old. For all subjects, Eng-

lish was their primary language. Results were com-

bined across vowels because it was desired to

obtain measures of identification that were
broadly representative of vowel context.

Percent correct scores of both groups were sub-

ject to Anova analysis (Winer, 1971). For the

group tested on filtered speech, although Conso-

nant Position (initial or final) Filter, and Subject

all had significant effects (at the 0.01 level of signif-

icance), Filter · Subject, Filter · Position, and

Position · Subject did not. Consequently, results
were averaged across subject and position to ob-

tain the matrices to analyze. For the group tested

on speech degraded by noise, although Position,

Speech to Noise Ratio (SNR), and Subject had sig-

nificant effects (at the 0.01 level) Subject · Position

and Subject · SNR did not. While the effect Posi-

tion · SNR was significant, it accounted for only

1.1% of the variance. Consequently, results were
averaged across both subject and position.
3. The automated recognition systems

A Hidden Markov Model back end was paired

with three front ends: the Mel-Filter Bank (MFB)

energies, the Mel-Filter Cepstral Coefficients
(MFCCs), and the Ensemble Interval Histogram

(EIH). The next sections describe the MFB and

MFCC parameterizations (Section 3.1), the EIH

parameterization (Section 3.2), and the HMM

back end (Section 3.3).

3.1. The MFB and MFCC parameterizations

The MFB and MFCC front ends were imple-

mented using the Hidden Markov Model Toolkit

software package (HTK, 2004). Each of these
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front ends generated a set of parameters every

ten milliseconds using a twenty millisecond

Hamming window for analysis of the input sig-

nal. The ten millisecond frame rate and twenty

millisecond analysis window values are within the
ranges typically used for ASR systems (Jankowski,

1995).

The Mel-Filter Bank (MFB) front end was

implemented by binning the squares of the magni-

tudes the Fourier transform coefficients of the

speech. The coefficients were binned by multiply-

ing by the filter gain and the results accumulated.

Thus, each bin holds a weighted sum representing
the spectral power in that filterbank channel. The

basic filter shape is triangular, with unit magnitude

at its center and extending to the center (peak) of

the neighboring filters. The filters were equally

spaced along the a mel-warped frequency axis:

Melðf Þ ¼ 2595 log10ð1þ f =700Þ ð9Þ
where f is frequency in Hz.

The 24 spectral energies were supplemented by

24 D-coefficients, weighted measures of the rate

of change for each spectral energy parameter over

a 50 ms time span. In addition, an overall energy

term was calculated. This energy value was only

used to calculate a D value (corresponding to

change in overall energy) and was not used directly
as a parameter. This yielded a final 49-element

parameter vector (24 MFB values, 24 D-MFB val-

ues, and 1 D-energy value (Rabiner and Juang,

1993).

The MFB can be seen as a fairly straightfor-

ward model of auditory processing. It implements

a spectral energy analysis along a frequency axis

warped to imitate the frequency mapping along
the basilar membrane and supplements the repre-

sentation with information about the pattern of

changes over 50 ms centered on the analysis time.

The MFCC front end used a Discrete Fourier

Transform to convert the mel-warped spectra into

24 cepstral coefficients for each frame of speech.

The zeroth cepstral coefficient (corresponding to

the signal energy in the frame) was used in the
same way as the energy value in the MFB system.

This resulted in a final 49-element parameter vec-

tor (24 cepstral coefficients, 24 D-cepstra, and 1

D-energy value).
3.2. Ensemble Interval Histogram (EIH)

The EIH (Ghitza, 1994) uses a set of bandpass

filters developed to display tuning characteristics

similar to neurons in the auditory nerve. After
speech is bandpass filtered, threshold detectors

produce a neural event every time a positive cross-

ing of a threshold occurs. Four (or five) thresholds

cover the 30 dB range of normal speech. After con-

verting the speech into a set of threshold cross-

ing times on the various channels, the intervals

between consecutive crossings are measured. A

histogram of frequencies corresponding to the
reciprocals of the intervals is then collected across

thresholds and across channels. This histogram is

termed the Ensemble Interval Histogram (EIH).

Implementation of the EIH front end can be di-

vided into the stages of waveform filtering, deter-

mination of individual threshold crossings in

model channels, and calculation of the intervals

between threshold crossings. The filters used in
the implementation were generated with a Matlab

toolkit (Slaney, 1998). The output of the filtering

stage resulted in a 73-channel representation of

the speech input. Each channel was then half-wave

rectified. The next stage determined the times that

a positive threshold crossing occurred for each of

seven logarithmically-spaced thresholds for each

channel. The original EIH representation varied
the thresholds for each channel of the filtering out-

put to match amplitude ranges in individual chan-

nels. In this research a single set of thresholds was

used for all channels in order to reduce computa-

tional complexity. The thresholds were logarithmi-

cally spaced to cover the range of amplitudes

exhibited by low-frequency channels for some

sample CVCs. This resulted in a 511 bit per-frame
representation (73 channels · 7 thresholds per

channel) where each sample had a value of 1 (when

the threshold for that channel had been crossed

positively) or zero (when the threshold had not

been crossed positively).

Intervals between consecutive threshold cross-

ings in individual channels were then recorded.

To determine the EIH representation for a partic-
ular frame, each channel was examined over a

length of time equal to 10 times the reciprocal of

the channel�s Center Frequency (CF, calculated
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as the frequency corresponding to the peak in the

frequency response curve for the filter used to gen-

erate the channel) back in time with a maximum

window length of 40 ms.

A histogram with 24 bins (chosen to be equiva-
lent to the number of filters used in the MFB rep-

resentation) was constructed based on the number

of samples in the intervals between threshold

crossings. The bins were determined by logarithmi-

cally spacing frequency thresholds between

roughly 100 and 5000 Hz with the following con-

straints added to the procedure. In order not to in-

crease the computational load by requiring
upsampling or interpolation, bins were rounded

to an integer number of samples (the waveforms

were sampled at 10 KHz, so samples were spaced

0.1 ms apart). An obvious additional constraint

was that no two bins round to the same number.

Table 2 shows the sample intervals per bin. These

constraints were not used by Ghitza in his original

EIH implementation. Their effect is to give more
weight to the low frequencies than either Ghitza�s
Table 2

Neural event intervals for each EIH bin

Bin # Samples

1 85–97

2 73–84

3 63–72

4 55–62

5 47–54

6 41–46

7 35–40

8 30–34

9 26–29

10 23–25

11 20–22

12 17–19

13 15–16

14 13–14

15 11–12

16 10

17 9

18 8

19 7

20 6

21 5

22 4

23 3

24 2
original EIH or either of the two traditional

parameterizations (MFB or MFCC). The 24 EIH

D-parameters and 1 D-energy value were calcu-

lated identically to the MFB and MFCC

parameterization.

3.3. The hidden Markov model back end

The same Hidden Markov Model (HMM) back

end (Rabiner and Juang, 1993) was paired with

each of the parameterizations (MFB, MFCC,

and EIH) discussed above. For all the results re-

ported here, the HMMs had five states per phone
model with fifteen diagonal covariance Gaussians

per phone model state. Transition matrices al-

lowed skipping states within a phone model.

The performance of ASR systems, especially in

degraded signal conditions, is dependent on the

speech used to train the systems. Systems trained

and tested under unmatched conditions have usu-

ally displayed poor performance. To minimize
these effects, we used Degradation-Specific Train-

ing (DST): a system is trained and tested on the

same degradation (e.g. additive noise at 5 dB

SNR).

We also evaluated the systems with Clean

Training (CT) in which the systems were trained

on full bandwidth noiseless speech, and Mixed

Training (MT), in which the systems were trained
on a mixture of the filtering conditions or a mix-

ture of the additive noise conditions. In general

performance with Mixed Training was slightly be-

low DST levels, while Clean Training results were

much worse than either DST or MT. With one

exception, the orderings of performance for the

various systems were the same as for the DST

training. The exception was for CT with lowpass
filtering, for which the performance of the EIH

system exceeded that of the MFB and MFCC sys-

tems for lowpass filtering more severe then 2400

Hz.

For training purposes, the CVC database was

split into three token sets of equivalent sizes, la-

beled DB1, DB2, and DB3. The token sets were se-

lected such that both initial and final consonants
were evenly distributed across the three sets.

ASR systems were trained on two of the three sets

and tested on the third (e.g. trained on DB1 and
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DB2, and tested on DB3) using each of the three

sets as a test set once.

With theDST approach, a separate system needs

to be trained for each type and severity of degrada-

tion (e.g. highpass filtering with a 200 Hz cutoff fre-
quency), with separate systems for each of the three

subdivisions of the database. Thus, for the 200 Hz

highpass filtering condition, three MFB systems

were trained and tested, one on each of the three

divisions of the speech data (DB1, DB2, and DB3

as described above), using the same number of

states and mixtures per state for each MFB system

but allowing training to determine the particular
parameter values. The results reported reflect the

average of the three separate training and testing

sets for a particular degraded condition.

Human training is difficult to match to any

common ASR training regimen. Nevertheless, hu-

mans perform very well even in relatively ‘‘un-

trained’’ conditions (i.e. conditions which are not

commonly experienced such as highpass filtering
at 2 kHz). This demonstrates an ability to handle

or adapt to novel environments, which machines

have not shown.

During the training and recognition phases, the

machine systems used a phone grammar reflecting

the sequence silence–vowel–consonant–vowel–

consonant–silence. All sequences of phones match-

ing this pattern were equally likely. This approach
removed the possibility of insertions and deletions

as error types and removed a significant source of

variability from the general speech recognition

task.

By comparing human and machine perfor-

mance, we hope to determine if these parameter-

izations matched with HMMs are able to extract

cues in the degraded speech signals that allow hu-
man-level recognition for phones or phonetic fea-

tures. Significant advantages are provided to the

machine systems, including the limited speech

material (creating effectively speaker-dependent

systems) and the phonemic constraints (knowing

in advance the phone sequence was vowel–conso-

nant–vowel–consonant), so that the machine per-

formance levels are likely near the best
performance levels possible on this speech data.

The human CVC results presented herein are for

subjects who had analogous advantages.
4. Performance comparisons

In this section, human performance on the CVC

and CV databases is compared to machine perfor-

mance on the CVC database for highpass filtering,
lowpass filtering, and additive noise degradations.

Identification scores are first compared. Next, Rel-

ative Information Transfer scores are reported for

divisions of the consonant set based on phonetic

features.

4.1. Confusion matrices

Normalized confusion matrices are presented in

Tables 3–11 for the human CVC results and in

Tables 12 and 13 for the machine CVC results.

In these confusion matrices, the consonants are or-

dered so that the Plosives come before the Fric-

atives. Relative Information Transmission scores

for Frication, then, view a confusion matrix as

four equal-sized (6 by 6) quadrants, with the upper
left quadrant (Plosive presented, Plosive recog-

nized) and the lower right quadrant (Fricative pre-

sented, Fricative recognized) considered correct

and the upper right (Plosive presented, Fricative

recognized) and lower right (Fricative presented,

Plosive recognized) considered incorrect. The Sib-

ilant subset of the Fricatives are grouped within

the Fricative set such that they are the final three
consonants. The Relative Information Transfer

score for Sibilance will again divide the confusion

matrix into quadrants, but for Sibilance the quad-

rants will not be of equal size: the upper left quad-

rant will be 9 by 9 and the lower right 3 by 3.

Two machine recognition confusion matrices

are included for comparison: one in which the deg-

radation was 1600 Hz highpass filtering (Table 12)
and the other in which the degradation was addi-

tive noise at +10 dB SNR (Table 13). These may

usefully be compared with confusion matrices from

humans for highpass filtering at 1400 Hz (Table 4)

and in additive noise at +2 dB SNR (Table 9).

These comparisons are of interest because they al-

low a range of Relative Information Transfer

scores to be examined in matrices with comparable
consonant error rates (ranging from 70% to 80%).

The MFB identification score was 80% for the

1600 Hz highpass filtered speech, which yielded



Table 3

Human results on the identification of 700 Hz highpass-filtered CVC syllables

Recognized phone Ni

p t k b d g h v ð s S z

p 94.5 0.8 3.0 0.8 0.8 363

t 0.9 97.7 0.3 0.6 0.6 343

k 0.9 42.3 0.3 0.3 0.6 25.7 27.7 2.3 350

b 0.3 0.9 96.8 2.1 339

d 0.3 98.0 0.3 1.4 358

g 1.7 2.6 95.4 0.3 349

h 0.3 0.3 82.6 6.4 10.4 357

v 5.2 93.9 0.9 344

ð 0.3 1.1 98.6 352

s 0.3 6.4 0.3 91.5 1.2 0.3 343

S 0.3 0.3 16.1 0.3 3.2 79.5 0.3 342

z 2.3 2.9 0.3 1.1 4.3 89.1 350

all 8.4 8.3 5.1 8.2 8.9 8.0 8.3 8.3 8.5 11.0 9.3 7.7 4190

The first 12 rows each correspond to a given transmitted phone and the entries in the various columns correspond to the percentage of

times that the phone was responded when the transmitted phone was uttered. Blank entries indicate that percentage of times was less

than 0.2%. The thirteenth column indicates the total number of times each stimulus was presented. The thirteenth row corresponds to

average over all transmitted phones.

Table 4

Human results on 1400 Hz highpass-filtered CVC syllables

Recognized phone Ni

p t k b d g h v ð s S z

p 78.1 4.1 9.6 3.5 0.3 0.6 3.5 0.3 342

t 0.3 94.4 1.4 3.9 360

k 1.0 1.3 37.0 1.3 1.0 28.2 27.6 2.6 308

b 6.1 0.9 89.3 3.4 0.3 326

d 0.3 0.6 4.1 89.0 4.1 1.9 363

g 4.8 1.5 3.3 13.7 75.0 1.5 0.3 336

h 0.3 68.6 12.8 16.6 0.3 1.5 344

v 0.3 5.8 90.2 2.4 0.3 0.9 328

ð 4.1 0.3 2.9 1.2 91.3 0.3 344

s 2.7 5.1 0.9 87.2 3.3 0.9 335

S 2.1 0.9 17.0 0.6 14.0 62.9 2.4 329

z 1.8 4.2 0.6 1.2 5.7 86.4 331

all 7.8 9.5 4.6 8.9 9.6 7.0 7.1 8.5 8.5 12.3 8.4 7.8 4046

See Table 3 for details.
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the highest Relative Information Transfer score of

98% when recognizing Sibilance. Dividing the ma-

trix (Table 12) into Sibilance-based quadrants as

described above, we see the error rate was very

low, (/h/ recognized incorrectly as /s/ 0.7% of the

time, and /h/ recognized incorrectly as /z/ 2.1% of

the time). By comparison, the results for humans

on a slightly less severe degradation (Table 4) were
an identification score of 72% and a Sibilance

score of 66%, consistent with the much more

numerous errors.

The MFB system recognizing speech at a SNR

at +10 dB SNR (Table 13) had an identification

score of 74% but a Relative Information Trans-

fer score for Sibilance of 96%. The drop in Sibi-

lance score from 98% for 1600 Hz highpass



Table 5

Human results on 2100 Hz highpass-filtered CVC syllables

Recognized phone Ni

p t k b d g h v ð s S z

p 47.5 16.8 1.1 21.3 3.5 2.7 0.5 1.9 4.8 375

t 0.9 83.6 0.6 9.2 0.9 0.3 4.5 336

k 0.9 3.6 34.1 2.1 0.3 0.3 18.1 33.5 7.1 337

b 8.5 7.3 0.6 76.9 3.2 0.6 1.2 0.9 0.9 342

d 0.9 0.9 6.9 70.3 11.0 9.5 0.3 0.3 347

g 8.0 3.5 9.7 24.8 45.4 6.8 1.5 0.3 339

h 30.5 60.4 2.3 6.7 341

v 0.3 9.1 83.4 3.3 3.9 362

ð 2.0 0.3 4.6 92.8 0.3 348

s 0.3 0.3 3.0 0.6 0.3 4.5 4.2 1.2 77.5 6.9 1.2 334

S 1.5 1.8 23.4 1.8 0.3 0.3 0.3 10.8 55.0 5.0 342

z 0.6 4.1 0.3 4.1 3.8 1.7 5.5 79.9 343

all 6.0 9.9 5.5 10.8 9.0 4.9 4.1 13.0 9.8 9.6 8.8 8.6 4146

See Table 3 for details.

Table 6

Human results on 2800 Hz highpass-filtered CVC syllables

Recognized phone Ni

p t k b d g h v ð s S z

p 47.0 18.4 3.2 7.1 0.8 9.5 0.2 0.2 2.1 4.0 7.2 0.2 956

t 5.1 71.0 0.1 11.8 0.6 2.6 0.1 0.1 7.5 0.8 0.3 968

k 2.6 3.3 23.5 0.8 0.3 0.5 0.7 17.6 46.3 4.4 962

b 16.4 28.3 1.1 36.4 3.3 3.3 0.1 3.9 2.8 4.3 966

d 2.8 4.6 0.3 3.1 34.3 18.7 0.2 0.2 30.3 3.1 1.8 0.6 967

g 6.5 4.9 0.4 4.4 11.9 52.1 0.2 14.7 2.7 2.0 0.1 971

h 0.1 0.2 0.1 0.1 35.3 57.5 0.2 1.9 0.1 4.5 985

v 0.1 0.2 0.3 0.1 11.9 81.7 0.3 1.8 0.2 3.4 977

ð 0.3 5.2 0.1 0.6 3.1 2.0 0.1 0.2 87.7 0.3 0.4 965

s 0.7 0.7 5.3 0.6 0.2 0.4 7.3 4.7 0.9 67.9 7.6 3.6 951

S 1.7 2.7 19.4 1.8 0.2 0.5 0.9 0.4 0.6 17.3 48.9 5.6 960

z 0.1 2.4 0.4 0.2 0.1 5.9 8.2 0.2 4.1 4.3 74.1 968

all 6.9 11.6 4.7 5.6 4.6 7.5 5.3 12.9 12.4 10.3 10.2 8.1 11,596

See Table 3 for details.
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filtering (Table 13) to 96% reflects slightly more

Sibilance errors in the noisy condition. By compar-

ison, the human results when recognizing noisy

speech at a SNR at +2 dB SNR (Table 9) indicate

an identification score of 73% and a Sibilance

score of 87%, again reflecting the larger number

of human Sibilance errors.

For Frication (or Plosiveness) essentially the
same pattern of results occurs. The Relative Infor-

mation Transfer (percentage correct) scores were
88% (98%) for the MFB system for 1600 Hz high-

pass filtering and 58% (91%) for humans for

1400 Hz highpass filtering; scores were 61%

(92%) for the MFB system at a SNR of +10 dB

and 47% (88%) for humans at a SNR of +2 dB.

4.2. Identification scores

Fig. 1 compares human identification scores

obtained with the CVC and CV databases on



Table 7

Human results for CVC syllables degraded by noise at S/N = +14 dB

Recognized phone Ni

p t k b d g h v ð s S z

p 90.9 2.0 5.1 1.0 1.0 197

t 99.0 0.5 0.5 200

k 1.0 99.0 204

b 1.5 0.5 87.4 2.0 1.5 0.5 6.1 0.5 198

d 0.5 0.5 97.7 0.5 0.5 0.5 217

g 1.6 95.8 0.5 1.0 1.0 191

h 3.5 1.2 83.2 0.6 0.6 1.2 9.8 173

v 6.9 83.1 10.1 189

ð 4.2 95.3 0.5 192

s 0.5 0.5 0.5 3.7 1.1 82.6 10.5 0.5 190

S 0.6 1.1 1.7 13.8 38.5 43.7 0.6 174

z 0.6 2.2 1.1 6.7 1.1 88.3 179

all 7.9 9.2 9.3 8.1 9.6 8.2 8.2 7.4 8.9 11.0 5.2 6.9 2304

See Table 3 for details.

Table 8

Human results for CVC syllables degraded by noise at S/N = +8 dB

Recognized phone Ni

p t k b d g h v ð s S z

p 82.5 1.5 8.8 6.2 1.0 194

t 100.0 193

k 3.9 1.0 94.1 1.0 204

b 0.5 85.1 3.7 0.5 0.5 6.4 3.2 188

d 0.5 1.6 95.3 0.5 0.5 1.6 193

g 1.4 0.9 94.8 0.5 0.9 1.4 212

h 1.2 4.2 1.2 84.9 1.2 7.2 166

v 6.1 83.3 10.6 198

ð 0.5 2.7 96.8 185

s 8.7 1.1 1.6 2.7 71.6 13.1 1.1 183

S 1.1 4.4 2.2 8.8 41.4 41.4 0.6 181

z 0.5 2.0 0.5 4.4 1.0 91.7 205

all 7.4 8.9 9.2 8.0 8.8 9.1 8.3 7.6 8.7 10.0 5.5 8.3 2302

See Table 3 for details.
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highpass, lowpass, and noisy speech with identifi-

cation scores from the EIH, MFB and MFCC

automated systems.

The upper left panel compares the two sets of

human identification scores with the results from

the three automated systems for the highpass filter-

ing conditions. For the machine results, the MFB

and MFCC identification scores are very similar.
The EIH system does not do as well in these high-

pass conditions. This is likely due at least in part to

the constraints placed on threshold crossing inter-
val bins, which provided fewer separate bins for

high frequency channels when compared to the

MFB and MFCC systems.

Over the range they can be compared, the

human CVC results are 10–20 percentage points

better than the human CV results. In part this re-

flects the effects of the difference between the +35 dB

SNR used for the CVC tests and the +12 dB SNR
used by Miller and Nicely for their filtering studies.

Thus their results are expected to be somewhat

lower than the CVC results. The human CVC



Table 9

Human results for CVC syllables degraded by noise at S/N = +2 dB

Recognized phone Ni

p t k b d g h v ð s S z

p 65.1 9.5 14.2 1.0 9.4 0.4 0.6 727

t 0.4 98.3 1.0 0.3 763

k 9.2 6.3 80.7 0.3 3.1 0.5 782

b 0.5 0.2 54.4 6.3 4.5 2.6 0.1 25.5 5.4 0.5 820

d 0.1 0.8 0.1 1.9 83.2 4.7 1.2 5.0 2.9 782

g 0.4 0.3 0.1 7.8 5.9 70.8 1.1 10.2 3.3 791

h 8.4 10.2 6.0 2.1 0.3 66.9 0.1 0.8 5.2 752

v 3.1 82.3 13.9 0.4 0.1 0.1 770

ð 2.5 2.8 94.4 0.3 785

s 0.4 12.5 5.7 4.7 2.4 64.5 9.5 0.3 786

S 0.3 7.4 8.8 5.1 5.7 0.1 45.5 26.8 0.4 770

z 0.1 0.1 0.4 2.2 0.2 7.2 0.4 89.4 810

all 6.6 10.3 8.5 7.5 9.3 7.7 8.0 7.2 9.1 13.5 4.5 7.9 9338

See Table 3 for details.

Table 10

Human results for CVC syllables degraded by noise at S/N = �4 dB

Recognized phone Ni

p t k b d g h v ð s S z

p 43.5 14.0 23.3 1.6 0.5 0.5 14.0 1.6 1.0 193

t 2.1 94.2 2.1 0.5 1.0 191

k 19.2 10.5 54.8 0.9 0.5 0.5 11.9 0.9 0.9 219

b 2.3 27.1 11.3 8.5 7.3 34.5 9.0 177

d 0.6 0.6 0.6 6.1 56.4 7.7 5.5 0.6 13.3 7.7 1.1 181

g 1.7 0.6 0.6 9.2 13.9 31.8 7.5 26.6 7.5 0.6 173

h 13.3 12.2 12.2 5.3 1.6 0.5 47.9 1.6 0.5 2.1 2.7 188

v 6.7 73.3 16.4 0.5 1.0 2.1 195

ð 8.2 3.5 88.3 171

s 0.5 0.5 0.5 16.7 7.4 8.3 2.8 52.3 10.2 0.9 216

S 0.5 0.5 4.9 16.5 8.7 4.9 0.5 44.7 18.9 206

z 3.2 1.4 0.9 4.1 0.9 10.6 2.3 76.6 218

all 7.1 11.0 8.4 5.8 9.0 5.4 9.7 7.0 8.1 15.9 5.1 7.6 2328

See Table 3 for details.
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results, taken at +35 dB SNR, are in agreement

with the better machine results (MFB and

MFCC), and considerably better than EIH. Both

the MFB and MFCC results display human levels

of performance, even surpassing human perfor-

mance at the most severe highpass condition

(2800 HZ cutoff). EIH results never exceed human

levels on the CVC tests although the gap in perfor-
mance between humans and the EIH system de-

creases as the highpass cutoff is increased from

200 to 2800 Hz.
The lower left panel compares human CV iden-

tification scores with the results from the three

automated systems for CVC syllables subject to

lowpass filtering. The machine identification scores

are fairly constant at 90% as the cutoff frequency is

decreased to 2000 Hz, falling to 80% for 1000 Hz

lowpass filtering. The MFB and MFCC results lar-

gely overlap at cutoff frequencies above 2000 Hz,
with the MFB results slightly superior to the

MFCC results at lower cutoffs. The EIH front

end consistently produces scores that are 5–10



Table 11

Human results for CVC syllables degraded by noise at S/N = �7 dB

Recognized phone Ni

p t k b d g h v ð s S z

p 31.5 19.2 24.6 3.4 0.5 0.5 15.3 0.5 2.5 1.5 0.5 203

t 0.5 89.0 4.7 1.0 0.5 2.1 0.5 1.0 0.5 191

k 14.2 26.5 35.8 1.2 1.2 2.5 14.2 2.5 1.9 162

b 1.9 3.7 3.7 22.2 10.5 5.6 8.0 38.3 4.9 1.2 162

d 1.7 3.5 2.3 6.9 32.4 8.7 8.1 0.6 23.1 12.1 0.6 173

g 3.5 2.5 3.0 8.5 8.5 28.6 5.5 0.5 1.0 25.6 12.6 199

h 19.4 15.6 10.6 3.8 1.9 1.3 28.8 1.3 0.6 5.0 11.3 0.6 160

v 0.5 5.6 63.8 27.0 1.0 2.0 196

ð 0.6 1.3 0.6 7.5 8.2 80.5 1.3 159

s 2.0 9.8 7.2 6.5 5.9 1.3 51.0 11.8 4.6 153

S 1.1 1.1 11.4 13.6 5.1 10.2 40.3 14.2 2.8 176

z 2.2 3.3 2.2 3.3 3.8 11.4 3.8 70.1 184

all 6.3 14.2 7.2 5.4 6.6 5.4 9.3 7.1 9.1 16.3 6.1 7.1 2118

See Table 3 for details.

Table 12

Machine results (MFB front end) on 1600 Hz highpass-filtered CVC syllables

Recognized phone Ni

p t k b d g h v ð s S z

p 70.7 14.3 7.5 2.0 4.8 0.7 147

t 95.2 2.1 2.1 0.7 146

k 4.1 4.7 82.4 0.7 7.4 0.7 148

b 38.5 0.7 44.8 6.3 6.3 2.8 0.7 143

d 1.4 20.9 0.7 1.4 68.9 5.4 1.4 148

g 4.9 7.0 25.9 6.3 4.2 51.0 0.7 143

h 1.4 84.0 0.7 11.1 0.7 2.1 144

v 2.8 1.4 0.7 0.7 8.3 63.9 22.2 144

ð 2.8 0.7 2.1 0.7 7.6 8.3 77.9 145

s 91.1 8.9 146

S 100.0 144

z 8.9 91.1 146

all 10.6 10.7 10.7 5.2 7.2 6.4 8.3 6.3 9.6 8.4 8.3 8.5 1744

See Table 3 for details.
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percentage points below MFB and MFCC, except

at the lowest cutoff frequency. At 500 Hz lowpass,

EIH gave scores equivalent to MFCC, 10 percent-

age points below the MFB results.

The human CV results are generally inferior to

the machine CVC results, but this may be reflect

the difference between the relatively noiseless ma-

chine tests (+30 dB SNR) and the relatively noisy
human tests (+12 dB SNR). For the highpass case,

we have shown that the relatively noiseless human

and machine CVC results are about 10–15 percent-
age points higher than the relatively noisy CV

data. This is roughly the difference between the

machine CVC results and the CV results for the

lowpass case. However, the +12 dB additive flat-

spectrum noise present in the CV tests should af-

fect highpass filtering results more than lowpass

filtering because the spectrum of speech generally

falls with frequency above roughly 1000 Hz.
The lower right panel compares the results from

the three automated systems with human identifi-

cation scores for the additive noise conditions.



Table 13

Machine results (MFB front end) for CVC syllables degraded by additive speech-shaped noise at +10 dB SNR

Recognized phone Ni

p t k b d g h v ð s S z

p 55.1 0.7 23.1 12.2 2.7 3.4 1.4 0.7 0.7 147

t 97.9 1.4 0.7 146

k 8.8 6.8 81.1 2.7 0.7 148

b 3.5 0.7 52.4 11.2 3.5 1.4 9.8 17.5 143

d 4.1 2.0 1.4 6.8 73.6 4.7 3.4 4.1 148

g 3.5 0.7 12.6 5.6 8.4 62.2 4.2 2.8 143

h 4.2 0.7 5.6 1.4 82.6 2.1 0.7 2.8 144

v 3.5 10.4 0.7 9.0 48.6 27.1 0.7 144

ð 3.4 1.4 11.7 2.1 0.7 6.2 24.8 49.7 145

s 0.7 95.2 4.1 146

S 100.0 144

z 6.2 93.8 146

all 15.4 1.1 10.6 8.4 8.3 6.4 8.4 7.7 8.4 8.5 8.3 8.5 1744

See Table 3 for details.
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The MFB system is consistently better than the

MFCC system except at 30 dB SNR, where the

two points overlap. The EIH front end consis-

tently yields the poorest identification scores. The

performance difference between the EIH front

end and the other front ends is not as large as

for highpass-filtered speech, being more similar

to the results for lowpass-filtered speech. The two
sets of human recognition results largely overlap

despite differences in the spectra of the noise:

speech-shaped in the case of the CVC syllables

and flat-spectrum in the case of the CV syllables

and small differences in the number of items (12

CVCs and 16 CVs). Whereas for both of the filter-

ing conditions the machine systems approached or

exceeded human-level recognition rates, for speech
degraded by additive noise machine recognition

accuracy ranges from 15–30 percentage points

lower than human accuracy.

4.3. Relative information transfer scores

Relative information transfer scores (Eq. (3))

were calculated for four divisions of the consonant
set corresponding to the phonetic features of Voic-

ing, Frication, Place, and Sibilance as shown in

Table 1. As in the analysis of error rates, the three

automated systems displayed similar patterns of

Relative Information Transfer scores.
4.3.1. Highpass filtering results

Fig. 2 shows Relative Information Transfer

scores for the highpass filtering condition. The

upper left panel shows Relative Information

Transfer scores for Sibilance, the upper right panel

shows scores for Voicing, the lower left panel

shows scores for Frication, and the lower right

panel shows scores for the Place feature.
Human scores for the CVC and CV syllable sets

are remarkably consistent, except for the case of

Frication. This is not unexpected for this distinc-

tion which can be made on the basis of high fre-

quency cues. The CV syllables were tested in the

presence the +12 dB SNR flat-spectrum noise,

which would be expected to resemble frication

noise more the much weaker speech-shaped noise
(at +35 dB SNR) used for the CVC tests.

We now compare Relative Information Trans-

fer scores for humans on the CVC and CV dat-

abases with EIH, MFB, and MFCC results. For

Sibilance, human performance is roughly constant

at an identification score of 70% out to a cutoff fre-

quency of 1.6 kHz. Machine performance is con-

siderably higher than human, with scores for the
MFB and MFCC systems being nearly perfect,

and superior to that for the EIH system, which is

nonetheless better than for humans. A similar

pattern is seen in scores for Frication in the lower

left panel, although for this feature machine
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Fig. 1. Percent correct scores for humans and automatic systems on speech degraded by highpass filtering (upper left panel), lowpass

filtering (lower left panel), and additive noise (lower right panel). The human results are marked by filled symbols, squares for our CVC

results and circles for the Miller and Nicely (1955) CV results. The machine results on CVC utterances are marked by open symbols,

diamonds for the EIH results, triangles for the MFB results, and crosses for the MFCC results. Note that the additive noise had a

speech-shaped spectrum (at +35 dB SNR in the human filtering tests, at +30 dB SNR in the machine filtering tests, at varying SNR in

the additive noise tests) in our study and a flat spectrum in the Miller and Nicely study (at +12 dB SNR in the filtering tests and at

varying SNR in the additive noise tests).
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performance is near perfect only for essentially
unfiltered materials.

Scores for Voicing shown in the upper right pa-

nel, by contrast, are nearly the same for humans

and the machine operating with the MFB and

MFCC system, and the human superior to the

EIH system for moderate degrees of filtering.

Scores for Place (lower right panel) show a similar

pattern of performance, with the MFB and MFCC
scores higher by roughly 15 percentage points, and

the EIH scores essentially the same as for humans.

Human scores are fairly consistent across the

four features examined, reflecting the lack of pat-

tern in their errors, which is seen in both the

CVC and CV results. In contrast, machine systems

show a greater ability to determine the Sibilance
and Frication classes correctly compared to Place
and Voicing classes, which introduces a pattern

in the machine errors despite the similar number

of phonetic confusions.

4.3.2. Lowpass filtering results

Fig. 3 shows Relative Information Transfer

scores for lowpass-filtered speech. Scores for Sibi-

lance, Frication, and Place are similar. The ma-
chine CVC scores are well above human CV

scores, with the MFB scores generally above the

MFCC scores, which are in turn above EIH

scores. It should be noted, however, that the hu-

man CV tests were conducted in white noise at

+12 dB SNR, while the machine CVC tests were

conducted in speech-shaped noise at +30 dB
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in Fig. 1. Note that additive noise with a speech-shaped spectrum was used in our study (at +35 dB SNR in the human tests, at +30 dB

in the machine tests) and with a flat spectrum was used in the Miller and Nicely study (at +12 dB SNR).
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SNR. In spite of this difference, the human scores

for Voicing were at roughly the level of the best

machine systems. This is in contrast with the over-
all consonant recognition scores, seen earlier in the

lower left panel of Fig. 1, which were superior for

the machine systems. This shows for humans a

greater robustness for recognizing Voicing over

Frication and Sibilance. For both humans and ma-

chines, recognition of Place showed the lowest

scores. In contrast to the highpass results, humans

show varying abilities for recognizing each of the
four features with lowpass filtering. Voicing is

the most consistently recognized feature especially

as the cutoff frequency is lowered.
5 Hant and Alwan (2003) have used a psychoacoustic-

masking model to account for the difference in the effects of

flat-spectrum and speech-shaped noise on the discrimination of

plosive consonants.
4.3.3. Additive noise results

The final set of Relative Information Transfer

score comparisons, seen in Fig. 4, is for speech de-

graded with additive noise. Scores for the Place
and Frication features largely overlap for the two

sets of human experiments. The differences be-

tween the two sets of human results are in the
Voicing and Sibilance features. Tests using flat-

spectrum noise (the CVs) resulted in higher Voic-

ing RIT scores and lower Sibilance RIT scores

when compared with tests using speech-shaped

noise (the CVCs). This is partially due to the spec-

tra of the respective noise maskers, with flat-spec-

trum noise having relatively more high-frequency

energy than the speech-shaped noise.5 Since the
cues for Sibilance largely reside in the high-fre-

quency portion of the speech spectrum, at a given

SNR flat-spectrum noise is likely to be more
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deleterious than speech shaped noise. If Voicing is

based on the low-frequency portion of the speech

spectrum, the flat-spectrum noise would be less

deleterious than speech-shaped noise at the same

SNR.
Roughly similar patterns of machine perfor-

mance are seen, with MFB scores higher than

MFCC scores, which were in turn higher than

EIH scores. Despite overall superiority of humans

in noise, Sibilance RIT scores are comparable for

human and machine systems using speech-shaped

noise, and superior to those for flat-spectrum

noise. Comparisons of the Frication and Place
scores are consistent with the roughly 5–10 dB

shift needed to match error rate scores of humans

and the MFB system. Voicing scores, which are

remarkably similar across the systems, suggest

the need for a roughly 15–20 dB shift required to

match MFB scores with humans. This reveals

Voicing classification as a major weakness of the
machine systems compared to humans. Voicing is

the one phonetic feature we examined that has a

temporal element to it, the intervocalic period,

which distinguishes between its presence or ab-

sence. This temporal aspect may be a particular
weakness of the HMM back end as opposed to

any of the front end parameterizations we

examined.
5. Summary and conclusions

The performance of our listeners on speech de-
graded by highpass filtering and additive noise is

fairly consistent with that of Miller and Nicely

(1955). This observation applies both to percent-

age correct scores and also to Relative Informa-

tion Transfer scores. The differences in overall

and RIT scores seem at least partially related to

the fact that we performed our filtering tests in
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speech-shaped noise at +35 dB SNR and whereas

Miller and Nicely tested in flat-spectrum noise at
+12 dB SNR. Relative to flat-spectrum noise,

speech-shaped noise has more power in the low

frequencies and less power in the high frequencies.

For the machine systems tested, the highest lev-

els of performance were exhibited by the MFB sys-

tem, with scores for the MFCC system the same or

very slightly inferior. Performance of the EIH sys-

tem was inferior to that of the MFB and MFCC
systems, both when evaluated in terms of overall

identification scores and when evaluated in terms

of the correct classification of individual features.

Machine scores reached or exceeded human lev-

els for highpass filtered speech. For noisy speech,

machine performance was significantly inferior to

human performance, displaying roughly a 10 dB
shift. For lowpass filtered speech, although this

comparison is not on the same speech data, ma-
chine performance was comparable or superior

to human performance. This difference was due

in part to the difference in noise backgrounds used.

Machine response patterns were found to be

similar for all three front ends tested. In particular,

the use of Ghitza�s Ensemble Interval Histogram

(EIH) auditory-based front end did not improve

ASR performance in degraded conditions. It also
did not significantly alter the overall error pat-

terns, which were more similar to the MFB and

MFCC pattern than the human pattern.

On the CVC database, as the effectiveness of the

speech cues is decreased through highpass filtering,

the gap between human and machine abilities

decreased or disappeared (top left of Fig. 1). This
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differentiates the effects of filtering from those of

additive noise (bottom right of Fig. 1). In the case

of additive noise, the gap in recognition accuracy

between humans and machines increases as the

speech is increasingly degraded.
The results reported here can be compared with

those obtained by others. The Lippmann (1997)

study cited earlier includes a comparison of human

and machine recognition of spoken alphabet let-

ters, with humans showing a 1% error rate and a

neural network system showing a 5% error rate.

Machine performance in this study seems roughly

consistent with that result despite the vastly differ-
ent approaches.

Jankowski�s comparison of the EIH with a

cepstral parameterization, like the Ghitza study,

used systems trained on clean speech and tested

in noise. On the isolated word recognition task,

performance degraded mildly between +24 and

+12 dB additive noise, rising from roughly 1% to

8% error rate, after which it degraded more
quickly. Results not reported here (but see Sroka,

1998) showed an MFCC system trained on clean

CVCs and tested across the range of noise degra-

dations would require a roughly �20 dB shift in

speech to noise ratio to match Jankowski�s MFCC

results. This disparity may arise in large part from

their testing isolated word recognition on a 105-

word database. Isolated words allow variability
in many dimensions beyond that of the CVC non-

sense syllables used here and could contain many

cues that would not have been available to the sys-

tems being tested on consonant recognition.

Analysis of confusion matrices shows differ-

ences in the error patterns between humans and

machines. In highpass conditions, machines make

relatively fewer Frication and Sibilance classifica-
tion errors while humans make relatively fewer

Voicing classification errors. Place classification

scores are comparable. The lack of pattern in

human errors across these features for highpass fil-

tered conditions was not seen in tests of ASR sys-

tems for the same conditions. The differences in

response patterns suggest that the human subjects

and the ASR systems were relying on different
properties of the acoustic speech waveform for rec-

ognition despite the overall performance level simi-

larities. The high information transfer scores for
various features indicates that even in these filtered

conditions cues persist, of which humans are not

taking advantage, that allow feature determination

at levels above those displayed by humans, and

that machines can take advantage of those cues
if trained in that condition.

Our findings are consistent with Ghitza�s report
of large differences between the results obtained

from humans and machines in noise. Ghitza�s
study, like Jankowski�s, used systems trained on

clean speech and tested in noise. Unfortunately

Ghitza does not report percent correct scores for

identification of consonants. however, all of the
features he examined at +10 dB SNR showed

greater than 10% error rates for the EIH except

one, while human error rate, if averaged, would

be roughly 6%. The one case where the EIH error

rate was less than 10% was for correctly classifying

a Non-Sibilant sound, which showed minimal er-

rors. Since Ghitza reports separate scores for clas-

sification of Sibilant sounds and Non-Sibilant
sounds (Sibilance classification of a Sibilant com-

pared to Sibilance classification of a Non-Sibilant),

and since the correct classification of Sibilant

sounds showed roughly a 40% error rate, it seems

that in his study recognition was biased toward

classifying sounds as Non-Sibilants. Averaging

the error rates for Sibilants and Non-Sibilants

leads to roughly a 20% error rate. Comparison
with our implementation of the EIH is made diffi-

cult because Ghitza used a Two-Alternative

Forced Choice approach (taking a speech sample

and only comparing two HMMs at a time, one

HMM for the correct phone sequence and one

for a phone sequence that differed by only one con-

sonant feature), because the testing in degraded

conditions was not matched with training in those
conditions, and because Ghitza used speech that

was lowpass filtered to 3600 Hz. Still, at +30 dB

SNR Ghitza showed an average feature error rate

of roughly 10%, which is consistent with the EIH

results reported here for 4 kHz lowpass filtered

speech.

It is possible that cues being used by the ma-

chine systems are only valid for the set of conso-
nants tested in the study, and that humans

ignore them because they become less useful when

the complete phone set of English is considered.
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Furthermore, the limited number of speakers (2)

and the Degradation-Specific Training could have

allowed the machine systems to learn cues in par-

ticular degraded conditions that are not robust

to additional speakers or across the degraded con-
ditions. This could explain the machine results in

highpass filtered conditions which actually outper-

formed human listeners. The training approach we

describe is of limited value commercially, because

it requires detailed knowledge of the operational

environment during training and assumes consis-

tent signal degradation. However, the fact that a

machine system is able to recognize at these levels
shows that there are cues present that allow recog-

nition at levels above those displayed by humans,

and that the HMM training was able to learn

those cues in these favorable training and testing

conditions. This was not seen for the additive noise

tests.

It is also possible that the cues being used by the

machine systems are used by some listeners but not
those tested. This is consistent with the double-

weak theory of speech perception (Nearey, 1997),

which proposes articulatory targets are developed

within a language in order to produce a reliable

(but possibly variable) set of cues that can include

redundancies. This would allow recognition to use

varying cues depending on the speech, the listener,

the talker, and the environment in which the
speech was occuring.

In additive noise conditions, humans outper-

formed the ASR systems. Human and machine

error patterns were more similar than in filtering

conditions, especially when overall performance

levels were matched, though not as similar as the

response patterns between the different ASR sys-

tems. As in the filtering conditions, machines dis-
played relatively good performance for the

Sibilance classification and relatively poor perfor-

mance for the Voicing classification (equivalent

to a difference of 15–20 dB in speech to noise

ratio).

Overall, these results motivate continued work

at the phone recognition level for improving

speech recognition and understanding systems.
Work in recent years has shown that the introduc-

tion of lexical, syntactic, and other higher-level

speech analysis can improve automated speech rec-
ognition. However, until classification of the basic

speech sounds can reach human levels, we cannot

know that continued improvements at introducing

these higher-level analyses will enable human-level

recognition.
Our results may motivate directed attempts to

augment traditional parameters in ways that will

improve their ability to make the Voicing distinc-

tion in order to produce a more noise-robust sys-

tem. Attempts to do frame-based classification of

phonological features using neural networks have

shown promising results (King and Taylor,

2000). Using HMMs to do word recognition based
on the outputs of neural networks performing

frame-based phonological feature classification

has shown performance levels comparable to tra-

ditional approaches (Kirchhoff and Bilmes,

1999). Further, augmenting a traditional frame-

based front end parameterization with frame-

based phonological feature values based on analysis

of the speech signal was found to improve perfor-
mance (Kirchoff, 1998) over the traditional front

end alone. A more directed application of phono-

logical classification based on identified phonolog-

ical feature weaknesses may yield finer resolution

into potential improvement by indicating a subset

of phonological features that are consistently mis-

recognized by machine systems. Phonological fea-

ture analysis could then be directed to just those
features that are typically misrecognized rather

than attempting to recognize a complete feature

set, minimizing the number of parameters (and

therefore the computational cost) of an improved

recognizer. In this view, degrading speech through

filtering or additive noise would affect the various

cues differently, possibly creating patterns of errors

as performance degraded, and would affect human
listeners differently depending on the extent to

which the particular cues they relied on were

robust to the signal degradations.

The differences in machine and human error

patterns and robustness to manipulations of the

speech signal supports the interpretation that they

are using different acoustic cues in the recognition

process. This motivates additional work to deter-
mine the specific acoustic cues that humans use

to recognize basic speech sounds more robustly

than machines. Knowledge of the cues used by
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humans could be used to direct future research by

identifying the cues that human test results show

are present and robustly detectable.

As an example, the disparity in Voicing classifi-

cation scores may arise from the temporal nature
of one of the key perceptual cues used by humans,

the intervocalic period (Klatt, 1975; Stevens, 1980,

1992). The Hidden Markov Models as used in this

research do not provide a means for modeling a

Gaussian distribution of a durational cue like

intervocalic period to make it useful for classifica-

tion. Thus, the HMM pattern recognition ap-

proach is unable to leverage one of the cues
known to be relied upon by humans.

To address this limitation of HMMs, a subpho-

netic feature detection stage (as opposed to the

phonetic feature classification approaches de-

scribed above) could be designed specifically to

recognize a cue like intervocalic period prior to

the HMM recognition stage. The duration of the

intervocalic period could then be used to augment
the traditional parameters for the HMM. This ap-

proach to improving ASR attempts to decrease the

performance difference between humans and ma-

chines by making available an additional piece of

information (the intervocalic period that HMMs

are otherwise unable to model), selected for its dis-

criminative ability for Voicing in Plosives, an iden-

tified weakness of the automated systems.
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